Blog Layout

Machine Learning: opportunity or threat?

November 10, 2021

In the light of the upcoming VBN Security Summit held in Amersfoort, we tackle the topic of Machine Learning and its implication in the security management field. On the 18th of November, the first lecture given will be about Artificial Intelligence as an advantage or a danger for the security environment. Regardless of the conclusion, it is clear that Artificial Intelligence and Machine Learning will shape the future of security. Therefore, it seemed natural to give a few insights on this topic ourselves as many major companies moved from a purely “signature-based” system to machine learning systems used to anticipate and to detect malware. If you want to learn more, keep on reading.  

1. First and foremost, what is Machine Learning?    

While machine learning has been around for quite some time now, the growing availability of large amounts of data and advances in computing power have created an environment that has allowed for significant technological progress in recent years. Even though terms are sometimes misused and misunderstood, machine learning can be viewed as a sub-field of today’s very important field of artificial intelligence, which has actually existed since the 1950s.


Machine learning is all about building statistical models that make predictions from data without hard-coded rules and have the ability to improve their performance over time with further data exposure. A machine learning algorithm makes a prediction about a property of interest given a sufficient number of instances from a data source, known as training data, and a property of interest when given a fresh, unseen example. This can be accomplished by calibrating internal parameters using known examples or by using alternative techniques.


Therefore, the concept of machine learning can be clearly defined as “the ability for computers to learn without being explicitly programmed”. Machine learning algorithms essentially develop models of behaviors and utilize those models as a basis for making future predictions based on new input data using mathematical techniques used across large datasets.


Machine learning is often interlinked with the development of self-driving cars. They would use the data gathered by car to anticipate various scenarios along the way such as bad traffic or crossing paths. However, a much more common and vastly utilized example can be identified: Netflix. The platforms constantly suggest new shows to watch based on the previously viewed ones. This constant update available on the platform is a form of machine learning through Netflix algorithm. But these examples are far from being the only ones. Various fields such as medical diagnostics, commerce or finance are also benefiting from this recent development. Regarding the security field, machine learning intends at helping businesses to better analyze threats and to improve the response to attacks and security incidents. 

2. Opportunities

Threat anticipation

As mentioned earlier, one of the key features of machine learning is the ability of machine learning models to analyse large amounts of data - both structured or unstructured. This can radically improve analytical capabilities in risk management and compliance by allowing risk managers in various kinds of institutions to identify risks more effectively and timely, make more informed decisions, and reduce the risk of incidents. Machine learning algorithms will help businesses to detect malicious activities faster and stop attacks before they even get started.

Enhance human learning

At the heart of machine learning in security, there is the belief that it helps human analysts with all aspects of the job, including detecting malicious attacks, analyzing networks, and vulnerability assessment. By that, we mean that the human brain will be pushing its analysis further thanks to machine learning, as the model will provide pre-analyzed data. Therefore, the human learning process will be starting a few steps ahead than it usually does. 

Automation of tasks

The real benefit of using machine learning is that it could automate repetitive and boring tasks, enabling the security staff to focus on more important work. The Machine Learning process should ultimately be aiming at removing the need for humans to do repetitive, law-value decision-making activities. Let the machine handle the repetitive work such as opening doors so that the humans can free up time to deal with strategic and crucial issues instead. 

3. Threats

Adversarial attacks

A classic adversarial attack targets a trained machine learning model by incorporating inputs to the model intentionally designed to cause it to make a mistake. It consists of subtly modifying an original image in such a way that the changes are almost undetectable to the human eye. They are like optical illusions for machines. The modified image is called an adversarial image, and when submitted to a classifier is misclassified, while the original one is correctly classified.


Adversarial attacks raise important security concerns as such attacks could be performed on different systems such as footage retrieved from CCTV cameras. Simply by adding a level of noise of the images, incidents could remain undetected as they would not be correctly classified. Its risk is also aggravated by the fact that they can be performed even if the even if the attacker has no access to the underlying model. A possible defense against them is to use adversarial training, i.e. generating many adversarial examples and explicitly training the model not to be fooled by them.

Data poisoning

Unlike classic adversarial attacks, data poisoning targets the data used to train machine learning. Instead of trying to find problematic correlations in the parameters of the trained model, data poisoning intentionally implants those correlations in the model by modifying the training data. As Machine Learning is often dealing with very large chunks of data, it would be very difficult to notice right away a few poisoned data within the sets which would to misinterpretation of the data.


While data poisoning sounds dangerous, it presents some challenges, the most important being that the attacker must have access to the training pipeline of the machine learning model.

In conclusion, as many arising new technologies, machine learning presents both positive and negative aspects depending on how it is used and by whom. Regardless, the development and the adaption of the technology is bound to be drastically increasing in the next few years. Therefore, rather than denying it, training in order to avoid a vast majority of potential threats might be the best option for the future of security businesses.

Sky-Walker Smart Energy Monitoring with AI: Optimizing Energy Consumption
By Marketing Entelec July 4, 2024
Reduce the energy consumption of your building by combining Sky-Walker with AI.
Fire, HVAC, PSIM
By Marketing Entelec June 27, 2024
Discover whats equipements ands systems needs to be installed for this summer.
PSIM, fire detection, fire protection, public address, Incident manager
By Marketing Entelec May 24, 2024
Discover how a company can optimize the security
Security, Safety, AI, PSIM, Retail
By Marketing Entelec May 10, 2024
Controlling the Security and Safety of Your Stores with Store Control
PSIM, safety, security, reporting
By Marketing Entelec April 23, 2024
Discover how the dashboard and statistics tool can help you manage your security in your daily life.
access control, intrusion, psim software
By Marketing Entelec April 11, 2024
Discover the partnership between Nedap & Entelec for the access control and the intrusion.
Zwanzederby onder hoogspanning: politie neemt extra veiligheidsmaatregelen
By Marketing Entelec January 31, 2024
In this article, we'll discuss the growing security issues in football stadiums and how an advanced PSIM platform like Sky-Walker can help improve the situation.
Tech For Retail 2023 - A look back at the event
By Marketing Entelec December 7, 2023
Get a glimpse of our experience at Tech For Retail 2023 with clever insights and our vision of the Retail Security landscape.
Explore how amusement parks can enhance their safety and security measures.
By Marketing Entelec November 6, 2023
Explore how amusement parks can enhance their safety and security measures.
Show More
Share by: